
JOURNAL OF COMPUTATIONAL PHYSICS 98,199216 (1992) 

Numerical Computation of 2D Sommerfeld Integrals- 
Decomposition of the Angular Integral 

STEVEN L. DVORAK 

Electromagnetics Laboratory, Department of Electrical and Computer Engineering, 
University of Arizona, Tucson, Arizona 85721 

AND 

EDWARD F. KUESTER 

Electromagnetics Laboratory, Department of Electrical and Computer Engineering, 
Campus Box 425, University of Colorado, Boulder, Colorado 80309 

Received April 6, 1990; revised December 13, 1990 

Spectral domain techniques are frequently used in conjunction with 
Galerkin’s method to obtain the current distribution on planar struc- 
tures. When this technique is employed, a large percentage of the com- 
putation time is spent filling the impedance matrix. Therefore, it is 
important to develop accurate and efficient numerical techniques for 
the computation of the impedance elements, which can be written as 
two-dimensional (2D) Sommerfeld integrals. Once the current dis- 
tribution has been found, then the near-zone electric field distribution 
can be obtained by computing another set of 2D Sommerfeld integrals. 
The computational efficiency of the 2D Sommerfeld integrals can be 
improved in two ways. The first method, which is discussed in this 
paper, involves finding a new way to compute the inner angular integral 
in the polar representation of these integrals. It turns out that the 
angular integral can be decomposed into a finite number of incomplete 
Lipschitz-Hankel integrals, which in turn can be calculated using series 
expansions. Therefore, the angular integral can be computed by 
summing a series instead of applying a standard numerical integration 
algorithm. This new technique is found to be more accurate and 
efficient when piecewise-sinusoidal basis functions are used to analyze 
a printed strip dipole antenna in a layered medium. The incomplete 
Lipschitz-Hankel integral representation for the angular integral is then 
used in another paper to develop a novel asymptotic extraction techni- 
que for the outer semi-infinite integral. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

The problem of finding the electromagnetic radiation 
from an electric current source in the presence of a stratified 
medium has been of interest for some time. In 1909, 
Sommerfeld solved the problem of a vertical electric 
Hertzian dipole over a homogeneous half-space [l]. Later, 
Horschelman treated the case of a horizontal electric dipole 
in air [2], and Elias analyzed the vertical magnetic dipole 
in air [3]. Then in 1926, Sommerfeld treated all four cases 
of elementary Hertzian dipole sources in air [4]. 

There has been a substantial amount of work done on the 
Sommerfeld problem since 1926. For a good historicai over- 
view see [S]. Many of the authors who worked on the 
Sommerfeld problem obtained asymptotic expansions which 
hold for large observation distances from the source, or for 
large values of other parameters such as the relative permit- 
tivity of the earth [S-9]. These asymptotic expansions can 
be used to efticiently compute the far-fields and quasi-static 
fields. When the index of refraction is large, it is even 
possible to obtain asymptotic expansions for the near-fields. 

While asymptotic expansions provide valuable physical 
insight into the Sommerfeld problem, they unfortunately 
cannot be used to compute the fields at all points in space 
for any given set of material parameters. However, with the 
introduction of high speed digital computers, it became 
possible to compute the Sommerfeld integrals at any point 
in space by using numerical techniques. Now, asymptotic 
techniques can be used in conjunction with numerical 
techniques to obtain an efficient algorithm for thecomputa- 
tion of Sommerfeld integrals [lo]. 

Green’s functions for more complicated multilayer 
problems can also be calculated with the use of a computer 
[ 1 l-141. Once the Green’s function for a specific problem 
has been obtained, the fields can then be computed for any 
given distribution of current by convolving the Green’s 
function with the source distribution. This operation can be 
written as 

E(x) = j G,(x - x’) . J(x’) ds’, (1) 
s 

where x = a,x + aY y + a,z. When the current distribution is 
unknown, as is the case for a perfect conducting scatterer or 

199 OOZI-9991/92 S3.00 
Copyright 0 1992 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 



antenna in a stratified medium, an electric field integral 
equation (EFIE) can be obtained by forcing the tangential 
component of the electric field to vanish at the surface of the 
perfect conducting body [ 15-211. The method of moments 
(MOM) can then be used to reduce the EFIE to a set of 
linear equations which can be solved using standard matrix 
techniques [21-231; thereby yielding an approximate 
distribution for the current on the body. 

Before the matrix equation can be solved, the elements of 
the impedance matrix must be computed. A typical matrix 
elment can be written in the general form 

Z,, = j j” w,,(x) . Ce(x - x’) . f,(x’) ds ds’, (2) 
s s 

where w,/f,, is one of the chosen weighting/basis functions, 
respectively. This is classified as the spatial domain 
representation of the impedance elements. Since the evalua- 
tion of the Green’s function involves a two-dimensional 
(2D) inverse Fourier transform, the computation of a typi- 
cal matrix element will involve a sixfold integration. It is 
important to develop efficient techniques for the computa- 
tion of (2), since the calculation of the elements in the 
impedance matrix usually requires a large percentage of the 
total computation time in a MOM problem. There are two 
different methods that are commonly used for this purpose. 

In the first method, a polar transformation is applied to 
the Green’s function, and then the angular integration is 
carried out in closed form-yielding Bessel functions of the 
first kind. The remaining semi-infinite integral can be 
classified as a one-dimensional (1D) Sommerfeld integral. 
Asymptotic extraction techniques, singularity extraction 
techniques, and other numerical techniques can then be 
applied to the 1D Sommerfeld integral [ 14, 17, 19, 24311. 
In [ 17, 25, 311, the authors point out that since the Green’s 
function only depends on the distance between the source 
and field points, an interpolation scheme can be used in 
problems where the Green’s function must be computed a 
large number of times. Once the Green’s function can be 
efficiently computed, then the matric elements are obtained 
by using a four-dimensional numerical integration routine 
for the remaining finite integrals. 

In the second method, the convolution theorem is used to 
rewrite the expressions for the electric field and the matrix 
elements as (see (1) and (2)) 

J J-m 

x J(a,, c12, z’) e -i(Wx+QY) &, dc12 
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If we choose basis and weighting functions whose Fourier 
transforms can be represented by combinations of algebraic 
functions and readily computed special functions, then the 
computation of a typical matrix element will only involve 
carrying out a 2D inverse Fourier transform. A polar trans- 
formation once again yields a Sommerfeld type integral, but 
this time the angular integral cannot be carried out in closed 
form. Therefore, this method involves the computation of 
2D Sommerfeld integrals. The expressions in (3) are often 
referred to as the spectral domain representations for the 
electric field and the impedance elements. In [ 15, 321, the 
2D Sommerfeld integrals are computed using a 2D numeri- 
cal integration routine. Once again, asymptotic extraction 
techniques can be used to enhance the efficiency for the 
computation of the semi-infinite integral [33, 343. 

Both of these methods have their advantages and dis- 
advantages. If we assume that an interpolation table has 
already been constructed for the Green’s function in the first 
method, then for each matrix element, a four-dimensional, 
definite integral must be computed using numerical techni- 
ques. On the other hand, a definite integral and a semi- 
infinite integral must be computed in the second method. 
The fact that the Green’s function becomes singular as the 
distance between the source point and field point goes to 
zero presents some difficulties in the first method. In the 
second method, this problem shows up in the form of a 
slowly converging integral. Luckly, there are techniques 
which can be used to circumvent these difficulties [14, 
26-30, 33, 343. For a given problem, one method may be 
better suited than the other; but in general, both of these 
methods are important and need to be investigated further. 

In two papers, we will develop accurate and efficient 
techniques for the computation of the 2D Sommerfeld 
integrals in (3) for the special case of piecewise-sinusoidal 
(PWS) basis and weighting functions (i.e., we will use 
Galerkin’s method). In this paper, we will concentrate our 
efforts on developing techniques for the computation of the 
angular integral in the polar representation for the 2D Som- 
merfeld integrals. We will show that the angular integral can 
be represented in terms of incomplete Lipschitz-Hankel 
integrals (ILHIs). By using series expansions for the evalua- 
tion of these ILHIs, we can avoid using a numerical integra- 
tion routine for the evaluation of the inner angular integral, 
thereby greatly improving the computational efficiency and 
accuracy for these 2D Sommerfeld integrals. 

(3) 

The problem of computing the outer semi-infinite integral 
is addressed in the second paper [35]. The decomposition 
of the angular integral in terms of ILHIs is used in [35] to 
develop a new asymptotic extraction technique (AET) for 
the outer semi-infinite integral in the 2D Sommerfeld 
integrals. 

In order to demonstrate the usefulness of the techniques 
that are developed in these two papers, we will apply them 
to the problem of computing the driving-point invut 1 
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impedance and the near-zone electric field distribution 
for a printed strip dipole antenna in a layered medium. 
These techniques are very general and can be applied 
to any planar structure whose current distribution can be 
adequately modeled using PWS basis functions. 

We will make a number of references to [23, 361 in this 
paper, however, the material that is contained in these 
papers can also be found in [37]. 

2. EVALUATION OF THE 2D SOMMERFELD INTEGRALS 

The printed strip dipole antenna, whose geometry is 
shown in Fig. 1, is assumed to be a perfectly conducting, 
infinitely thin piece of metal, The surface of the antenna is 

designated by S. In order to keep things as simple as 
possible, we will assume that the antenna is fed in the center 
by a sinusoidal delta-function gap voltage source and that 
the antenna is narrow enough so that the transverse compo- 
nent of the current can be neglected. The eJw’ time 
dependence will be suppressed in this analysis. This struc- 
ture was chosen because it is simple enough that it does not 
complicate the analysis, and at the same time it provides a 
good problem for comparison purposes. 

The antenna is located in a general stratified medium. The 
inhomogeneous nature of this problem can be characterized 
by specifying a complex permittivity, 
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FIG. 1. Printed strip dipole antenna in a general stratified medium. 
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and a permeability, ppq, for each layer. The subscript pq 
denotes the qth layer in the positive z half-space whenp = 1, 
and the qth layer in the negative z half-space when p = - 1. 

The current on the antenna will be expanded in terms of 
PWS basis functions which are defined analytically as 

J’“‘(x y) x 7 

! 

sin[k,(d- Ix-nd+y 
2u sin(k, d) 

ly, Gu, Ixpnd+l, <d \ = 
1 3 

0; otherwise J 
(5) 

where d = 21/(N + 1 ), N is the number of basis functions, and 
k, = o &. The value of k, can be chosen arbitrarily; 
however, in some cases a judiciously chosen value for k, can 
significantly improve the convergence of the solution. This 
basis function satisfies the boundary condition that requires 
the normal component of the current to vanish at the ends 
of the antenna and guarantees that the overall trial function 
will be continuous. It also has the advantage that the desired 
accuracy can often be obtained by using only one basis func- 
tion when the antenna is near a resonance. This property is 
very useful&especially in array problems [38, 391. The use- 
fulness of the PWS basis function is demonstrated by the 
large number of authors that have chosen to use it in their 
work [15, 26, 28, 33, 34, 38411. 

We are interested in finding an efficient way to compute 
both the elements in an impedance matrix which results 
from a MOM formulation and the electric field which is due 
to a given current distribution on a printed strip dipole 
antenna in a layered medium. As was shown in [23], the 
computation of these quantities requires the evaluation of 
2D Sommerfeld integrals. A 2D numerical integration 
routine can be used to compute these integrals, but it will 
require a large amount of CPU time. Therefore, it is 
desirable to find a more efficient computational method. 

The 2D Sommerfeld integrals that need to be computed 
are 

Efpq)(x y z) = , 7 2vn2s::(k,d) i “1: ‘-‘,’ ” 1 
x { Cf’l”“‘(k z) - f:““‘(A ~11 ,a,(k,, 4 x 
+ I- nd, y, (1, 0, 0,O)) + Sp’(1, z) 

x~,(k,,1,x+I-nd,y,(l,O,l,O))) 

+ a Y A[fl”“‘(A, z) -fp’(A, z)] 

x 4(kA, A x + 1- nd, Y, (0, LO, 0)) 

+a,~~(k,,I,x+I-nd,y,(l,l,l,O)) 

xf:""'(A,z)) I d.4 (6) 

and 

zm”z[ m si!:kAd)]’ J: { Cfl"V, Wf:"V, O)l 

x 4(k,, 1, d(m-n), '4 t&O, 0, l))+f:"'(A 0) 

x~(k,,I,d(m-n),O,(O,O, 1, l)))ldJ-, (7) 

where the angular integral has the general form 

&PA, 4 x, Y, S) 

[cos(dA cos 19) - cos(k,d)] sin(ul sin 0) G+’ = 
k:, - A2 cos* 8 

and S = (S, , S,, S,, S,). The functions f ipq)(L, z), 
f :p”‘(& z), andfp)(I1, z) are similar in form to the expres- 
sions that are obtained in a transmission line analysis. 
Expressions for these functions are 

fi”“‘(A, z) = 
op,,A(,P4)[e -WWz + rg9)eiprp9z] 

A sin 85’“‘(1 cos 8, 2 sin 0) x 

fpqA,z)= 
pz,q~~)[e -.~P~vz _ rtp’l)ejp9qz1 

1 cos e5p(n cos 8, I sin e) 
(9) 

f:““)(n, z) = ~2A(yP4)[e-h9z + r(yP4)ejPrP9z] 

;1 cos eP(2 cos e x 2 1 sin e) 

Since the fields must remain finite valued as z + + cc, we 
must restrict 

for pq = In and pq = - lm. For other values of pq, the above 
restriction is unnecessary; however, for the sake of con- 
sistency, we will use (10) for all values of pq. 

Recurrence relations can be obtained for the amplitude 
and reflection coefficients by enforcing the boundary condi- 
tions at the source-free interfaces: 

Ap)p e P9 
.iP+pp9[,-2i~~~~z~ + r$9)] 

=@4+1) 
FP,Y+ 1 

eiprp,9+~+q e-*jprp.9+t+y+ r(P,Y+l) 
C ” 1 

(11) 
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(12) 

A(VP4)~~~e’P’p4Zp4[e-~jP~Py”pq + rp)] 

==A f.9’ ljE 
P-q+ le 

JP~~.q+l=/w[~- 2jp~p,9+lzp9+rp9+l)] 

(13) 

i[ 

(e- 2iP7p.q+13?g + r(p,9+ 1) 
v 1 

\ 

_ EP9TP.9 + 1 2jp~p,9+r~p9_r(P,9+~) 

p9+17pq(e- v E % )I! 
X 

ir (e- 2jpTp,q+lzpy + fCfq+ 1)) 

\ 
+ &PqTP,9 + 1 

&p,q+lrpq (e- 

2jPb+i~p9- rp9+1) 

(14) 

If we assume that the only electric current sources are 
located at z = 0, then there will not be any waves coming in 
from z = f 00. Therefore, 

Since the reflection coefficients in the two semi-infinite 
regions are equal to zero, we can recursively compute the 
values of the reflection coefficients in the other layers by’ 
using (12) and (14). Also, reference to (11) and (13) shows 
that all of the amplitude coefficients in the upper/lower 
layers can be expressed in terms of the amplitude coefficients 
in the layers which are next to the sources (i.e., A$‘$JA$b’), 
respectively). Therefore, if we can find expressions for these 
amplitude coefficients, then the spectral domain fields will 
be uniquely determined. 

Expressions for the amplitude coefficients in the layers 
adjacent to the antenna can be obtained by enforcing the 
boundary conditions at z = 0: 

A’“) = &,,(l +f V’)) E-i,(l +r;-‘l’) 
v 

7,,(14y)+7~,,(1-r~-“‘) 

A cos e7, + 2 sin e?., 

The 2D Sommerfeld integrals in (6) and (7), and the 
other results that are listed above, were obtained by using 
spectral domain techniques. See [ 23 ] for a detailed deriva- 
tion of these equations. 

This paper is devoted to finding an eflicient way to com- 
pute the angular integrals in the 2D Sommerfeld integrals 
(8). The problem of the efficient computation of the outer 
integral is addressed in [35]. 

We have found that it is convenient to express (8) in 
terms of a new integral, 

4&A, 4 x, Y, s,=/;z ;;““;e;;;s:;l 

e-j~~(~,~)~~~C~-~eu(x,.~)l 

x (k:,-;12COS2e)s4+l de, (17) 

where T(X, y) = ,/m and 8,(x, y) = tan-‘(v/x). If we 
represent the trigonometric functions in the integrand of 
(8), which have trigonometric functions in their arguments, 
in terms of exponentials, and apply the identity 

x cos e + y sin e = Y c0s(e - e,), (18) 

then it can be shown that (8) can be rewritten as 

&(k/, > 1, x, Y, (S, > S2, S,, 0)) 

=sp_i_, [ -2 cos(k,d)]l-‘P’ 

x c Qi(k,, 4 x+& y+m (S,, s,, S,, 011, 

4=-l 
(19) 

=-&& c2- 141X-1)” 

x 12 + 4 cos2(k, d)] Ygk,,, ,1, x, y + q2u, S) 

2 

+ 1’ [-4cos(k.d)J2-‘P’ 
p= -2 

x 4;(k,, 4 x + pd, Y + q2v, S) 

II S=~O.O,S,.l)’ 
(20) 

where Cb means to sum over all p excluding p = 0. 
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If we can efficiently compute integrals which have the 
general form of (17), then we will be able to calculate the 
angular integrals in (6) and (7). In Appendix A, YZ is 
decomposed into a finite number of ILHIs, Bessel functions, 
and other elementary functions. The ILHIs that need to be 
computed have the general form 

Je,(a, z) = .$: epU’Jo(t) dt. (21) 

It is also shown in Appendix A that we can use the expres- 
sion for 2J, which is given in Table III, in place of JJ~ and 
still obtain the correct result for Y1 when S takes on one of 
the values in (26) or (27). 

Now that we know how to express 91 in terms of a finite 
number of ILHIs, we must find an efficient way to compute 
these ILHIs. The ILHI, Je,(a, z), was studied extensively in 
[36]. An algorithm was presented in [36] which efficiently 
computes Je,(a, z) to a user defined number of significant 
digits (SD). This algorithm uses one of three different series 
expansions to compute Je,(a, z). The choice of which 
expansion to use depends on the parameters a, z, and SD. In 
Appendix B, we show how the results in [36] can be used 
to construct an efficient algorithm for the computation of 
& 

For the set of basis functions that we have chosen 
(see (5)), we will only need to compute Yi(kA, il, X, y, 
(0, 0, S3, 1)) for the special case ofy = 0 (see (7)). If we had 
also chosen to segment the antenna in the y-direction, then 
y would have taken on non-zero values just as x does. At 
this point is is beneficial to look at some special cases, 
including the one which is discussed above. One interesting 
case occurs when - y is substituted for y in (17). Using the 
change of variables, 0 = - 8, it is easy to show that 

9#,, 4 x, -y, S) = (- 1 IS’ 4a;(k,4,4 x, Y, S). (22) 

Therefore, for the special case of y = 0, the terms in (20) for 
q = - 1 are related to the terms for q = 1. 

Similar simplifications arise for some special cases of x. 
This time, if we substitute -x for x in (17) then we can use 
the change of variables, 0 = z - 0, to show that 

4e;,(k,,& -x,y,S)=(-1)S2~(kA,IZ,~,y,S). (23) 

Therefore, further simplifications occur when computing 
Y1(kA, 1,0,0, S). If we refer to (68) and (70) we find that 
these simplifications will also hold if & is replaced by 3j in 
(20). 

3. NUMERICAL EXAMPLES 

To demonstrate the power of the techniques which have 
been developed in this paper, they will be applied in this 
section to the analysis of printed strip dipole antennas in 
layered media. The specific geometry that we are interested 
in is shown in Fig. 2. The presence of the perfectly con- 
ducting ground plane at z = z ~ 1 I can be handled by finding 
the limiting cases for (12) and (14) when s-r2 + 1 -jco. 
This procedure yields the following expressions for the 
reflection coefficients: 

(24) 

We will only look at problems which include lossy dielec- 
trics in this paper; therefore, a real-axis integration can be 
applied to the outer semi-infinite integrals in (6) and (7) 
since the poles and branch-points are located off of the real- 
axis. In problems where no losses are present, a real-axis 
integration can still be used provided that the pole extrac- 
tion technique is employed [26]. We will use a version of 
the adaptive quadrature routine DOlAKF [42] which has 

FIG. 2. Printed strip dipole antenna geometry used in the examples. 



been modified to handle complex valued integrands to com- 
pute the outer integrals. These semi-infinite integrals are 
truncated at a suitable upper limit of integration, L. The 
inner angular integral (8) will be computed by using either 
the adaptive quadrature routine DOlAKF or the decom- 
position in terms of ILHIs. 

The impedance matrix is a symmetric Toeplitz matrix 
[43] for this problem. Therefore, we only need to compute 
Z,, for m = 1, 2, . . . . N, where N is the number of basis func- 
tions. The symmetric properties of the impedance matrix are 
used along with a number of other special properties to 
improve the computational efficiency for this problem 
(these techniques are discussed in detail in [23] ). 

We will first check our algorithm by comparing our 
results with the results in [34, Fig. 43. In this example, we 
are interested in computing the input impedance of a 
printed strip dipole antenna on a grounded lossy substrate 
for different lengths of the antenna (2, is the free space 
wavelength and should not be confused with the spectral 
variable A). Since there are only two layers in this problem, 
we will set z,, = z12 = 0. The current on the dipole is 
expanded in terms of live PWS basis functions. The results 
are shown in Fig. 3. A visual comparison between Fig. 3 and 
[ 34, Fig. 41 confirms that the program is working properly. 
It should be noted that five PWS basis functions adequately 
model the current distribution when the antenna is 
operating near the first resonance; however, for longer 
antennas, more basis functions should probably be used to 
obtain accurate results. This example also shows that a 
real-axis integration can be used to compute the outer semi- 
infinite integral even when the losses in the problem are very 
small. 

Now we will make a comparison between the two com- 
putational techniques for the inner angular integral (i.e., the 
decomposition in terms of ILHIs and the numerical integra- 
tion routine DOlAKF). In order to make this comparison, 
we will use both techniques to compute the current distribu- 
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tion on a printed strip dipole antenna which is intended for 
use as a hyperthermia applicator. A simplistic model in 
which the body tissue is represented as a layered medium 
will be used. The numerical examples were carried out on a 
Hewlett Packard 9000 series 300 computer. 

We will analyze a hyperthermia applicator which has the 
same material and geometry parameters as those used in the 
example in [44]. However, we will use a printed strip dipole 
antenna, instead of a microstrip patch antenna, to excite the 
fields. An operating frequency of 915 MHz is used, and the 
antenna is assumed to be driven in the center by an idealized 
delta function gap voltage source. The antenna lies on a 
0.5 cm thick grounded Rexolit substrate (z-r, = -0.5 cm 
and E -ii =2.53&,). A water bolus (&ii = 80~~) is placed 
between the antenna and the muscle tissue in order to 
prevent overheating of the tissue which lies close to the 
antenna. Muscle tissue (si3 = (58 - j12) cO) lies in the upper 
half-space which starts at zll = zi2 =0.5 cm. All of the 
materials are nonmagnetic. 

The only other parameters that need to be specified are 
the wavenumber for the basis functions, k,, and the 
antenna dimensions (see Fig. 1). We will choose sA = 
(sri + E- ,,)/2 = 41.26~~. Also, we will arbitrarily choose the 
width of the antenna to be 2v=O.4 cm, and we will use 
antenna lengths that correspond to the first and third 
resonances in this example. In Fig..4, the input impedance is 
plotted versus the antenna length for the parameters given 
above. The results in this plot were obtained by expanding 
the current in terms of five PWS basis functions. From this 
plot we find that the first and third resonances occur when 
the antenna length is approximately equal to 2I= 2.34 cm 
and 21= 7.76 cm, respectively. 

In Table I, we have listed the amount of CPU time that 
is required to compute the elements in the impedance matrix 
to four significant digits of accuracy for a variable number 
of basis functions. The second column in this table shows 

c-l2 = (1. - jm)co 

I I 
2 .4 .6 .a 1.0 1.2 

Antenna Length ‘2/(x0) 
Antenna Length Z(m) 

FIG. 4. Input impedance versus antenna length for the hyperthermia 
FIG. 3. Input impedance versus dipole antenna length. . 

appkator. 
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TABLE I 

Typical CPU Times for the Computation of the Elements 
in the Impedance Matrix for PWS Basis Functions 

Antenna length 

No. of Upper 
basis limit 

functions L 

21= 2.34 cm 21= 1.16 cm 

ILHIs DOlAKF ILHIs DOlAKF 

1 40,000 73.78 s 646.14 s 85.82 s 772.50 s 
3 40,000 177.78 25 10.02 257.20 
5 50,000 255.82 5087.02 590.62 i 
7 50,000 324.48 3 820.22 1 
9 60,000 410.22 t 1092.04 : 

where the outer semi-infinite integral was truncated. The 
values for L were obtained by trial and error. The amount 
of computation time required for the two different antenna 
lengths are shown in columns three and four, and five and 
six. In the columns headed by “ILHIs,” the inner angular 
integral was computed using the decomposition technique. 
Numerical tests showed that requesting seven significant 
digits of accuracy from the expansions for the ILHIs assured 
the convergence of the outer numerical integration routine. 
The numerical integration routine DOlAKF was applied in 
the columns headed by “DOlAKF.” It was found that 
requesting five significant digits was adequate for the 
numerical integration routine. When $ appears in a space, it 
means that the numerical integration routine could not 
produce the desired accuracy for the given inputs. 

A comparison between columns three and four, or live 
and six shows that it is much more efficient to expand the 
angular integral in terms of ILHIs than to compute it using 
the quadrature routine DOlAKF. Also, DOlAKF failed to 
produce the desired accuracy of four significant digits in a 
number of cases. On the other hand, the decomposition in 
terms of ILHIs had no problems. 

Table I also shows that a larger amount of computation 
time was required for the longer antenna than the shorter 
antenna. The reason for this is that the inner angular 
integral is more difficult to compute when the basis func- 
tions are widely separated. 

Once the current distribution has been obtained on the 
antenna, then (6) can be used to obtain the associated 
electric field distribution. When analyzing hyperthermia 
applicators, it is important to find the heating distribution 
in the muscle tissue (i.e., z > zll in this example). The 
amount of heating that will occur in this simplified tissue 
model is proportional to o13 IE(13)(x, y, z)/‘. 

Now we will obtain heating patterns for the previously 
described hyperthermia applicator at the same values’ of z as 
those in Fig. 6 of [44]. We will use a dipole antenna whose 
length is 2E = 2.34 cm and we will use five PWS basis 
functions for this analysis. 

The electric field will be computed at a number of points 
in a grid. We will use a square grid that extends out to 
Ix,,,1 = ly,,,( = 31, where 21 is the length of the dipole 
antenna. Due to the symmetry in this problem, we only have 
to compute the electric field in the first quadrant. If we 
compute 37 points in both the x and y directions, then the 
spacing between grid points will be (see (5)) 

This number was chosen so that we can apply the computa- 
tional techniques that are discussed in [23]. The computed 
relative heating patterns are shown in Fig. 5. The peak 
values for these heating pattern are listed in the second 
column of Table II. The third column in Table II shows the 
relative values of the heating pattern on the z-axis. 

The heating distribution that is obtained when using a 
dipole antenna differs significantly from the heating dis- 
tribution for a microstrip antenna [44, Fig. 41. The dipole 
heating distribution has two large peaks which are caused 
by the fringing fields at the ends of the dipole antenna. 
The fringing fields are only present in the near-field of the 
antenna. As the distance from the antenna increases, the 
contribution from the fringing fields becomes negligible. 

The heating distribution for the microstrip applicator in 
[44] does not exhibit the fringing field effects that were 
observed with the dipole applicator. If we compare the 
results in Table II with [44, Fig. 41, we find that deeper 
penetration can be obtained by using the dipole applicator 
than the microstrip applicator. At a distance of 3 cm from 

FIG. 5. Relative heating patterns for the hyperthermia applicator. 
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TABLE II 

Relative Values for the Heating Distributions 
in Fig. 5 

; (cm) 
lE(x, y, z)I;,, 

IE(x, y, 0.5 cm)l$,, 

0.5 I .oQo 0.250 
0.8 0.312 0.147 
1.1 0.139 0.100 
1.5 0.067 0.064 
2.0 0.038 0.038 
2.5 0.024 0.024 
3.0 0.015 0.015 
3.5 0.010 0.010 

the microstrip applicator, the peak power absorption has 
fallen to &- of the power that was absorbed at a distance of 
1.1 cm from the applicator. In the case of the dipole 
applicator, the peak power absorbed at z = 3.0 cm is nine 
times less than the power absorbed at z = 1.1 cm. Referring 
to Fig. 5 and [44, Fig. 63 we find that the heating distribu- 
tion defocuses faster in the case of the microstrip applicator. 

Actually, neither one of these antennas would make a 
very good applicator if it was used by itself. Referring to 
Table III we find that the magnitude of the peak electric 
field has decayed to e ~ I of the maximum value that exists at 
the surface of the muscle tissue by the time it has penetrated 
only 0.6 cm into the muscle tissue. In comparison, a 
normally incident plane wave has a skin depth of 6.6 cm. 
Therefore, in order to obtain a useful applicator, an array of 
dipoles or microstrip antennas would have to be used. 

The observations that we have made are only valid for the 
specific antennas that were analyzed. It may be possible to 
obtain a better applicator by operating one of the antennas 
in a different mode (i.e., change the antenna dimensions) or 
changing the applicator geometry. 

We used two different methods to compute the heating 
distribution at z = 0.5 cm (see Fig. 5). In both methods the 
outer semi-infinite integral was computed using a version of 
DOlAJF [42] which was modified to handle complex 
valued integrands. In order to obtain four significant digits 
of accuracy in the results, the numerical integration was 
carried out to L = 1000.0. 

In the first method, the inner angular integral was 
expressed in terms of ILHIs. This method took 17122.3 
CPU seconds to compute a 37 x 37 grid of points. This 
corresponds to an average of 12.51 CPU seconds per grid 
point. 

In the second method, the inner angular integral was 
computed using the adaptive quadrature routine DO1 AJF. 
This method required 35096.4 CPU seconds, or 25.64 CPU 
seconds per point. 

This example once again shows that expanding the 

TABLE III 

& Decomposed into a Finite Number of ILHIs 

D,= 
-(-,y,)‘+% 

2(k2,S:-IZ)‘+s4 

-s, 
D5=4k;(k;S:-A2) 

D = (-W.J-S2 

[ 

3k;S:-%* ‘a Ak,, 
9 2(k:,S:-A*) 2kZ,(kZ,S:-1’) 1 +k2,--1.2 

F, (RI, PI = -PcosQ,+jsin0,-, Pal 
-P cm B. * sin e. Jl - PZ; O<P<l 

+ (1 -S,)~[xJ,(lr)+jrJ,(ir)]} 

an, x, L’, s,, P) 

= -nj(j@Ci)'l-l {e~‘“F*rJ1-F:Je,(-jF+,Ir) 

+(-l)SIe-‘“F-r Jl-F?Jeo(-jFm,h)} 

4oG x, Y> PI 

+emJ”Fmr(l -Fz)Yele,(-jF_, nr)-2[.I,(lr)- jPCOS &Jo(h)]} 

angular integral in terms of ILHIs improves the efficiency 
for computing 2D Sommerfeld integrals. An even greater 
improvement in the efficiency would be obtained if the three 
components of the magnetic field were computed in addi- 
tion to the three components of the electric field. 

4. CONCLUSION 

We have demonstrated in this paper that the angular 
integral, in the 2D Sommerfeld integral associated with 
PWS basis functions, can be represented in terms of a finite 
number of ILHIs. We have also shown that representing the 
angular integral in this manner provides a more accurate 
and efficient method for computing the angular integral 
than using a standard numerical integration routine. 
Furthermore, it is shown in [35] that the expansion of the 



208 DVORAK AND KUESTER 

angular integral in terms of ILHIs can be used to develop a 
novel asymptotic extraction technique for the outer semi- 
infinite integral. This asymptotic extraction technique 
provides further improvements in both the accuracy and 
efficiency. 

The techniques which have been developed in this paper 
are not restricted to PWS basis functions. They can be used 
with any basis functions which result in angular integrals 
which have the general form (8). This includes entire 
domain [37, Chap. S], rooftop [45], pulse, and traveling 
wave basis functions. 

APPENDIX A: DECOMPOSITION OF x3 INTO A 
FINITE NUMBER OF ILHIS 

A. 1. Introduction 

In this appendix, we will decompose (17) into a series of 
ILHIs. This integral will exhibit a different behavior for 
each different value of S. If we are interested in computing 
an impedance element, then we will need to compute & for 
(see (7)) 

(26) 

On the other hand, if we are interested in computing the 
electric field, then (see (6)) 

(27) 

A.2. Partial Fraction Decomposition 

We will first define two new integrals, 

(28) 

x44 4 Y, PI = 1 
II e-jlr(x,y)cosCB~Bo(x,y)l 

de. (29) 
--II (COS e + P)’ 

By making the change of variables, 8 = 0 - rr, it is easy to 
show that 

Jm, x, Y, s,, -PI= -(-1P can, x, y, Sl, PII* 
,a;(& x, Y, -P) = C-w, x, y, VI*. 

(30) 

If we apply a partial fraction expansion to the integrand of 
(17) and use the results in (30), then we can show that 

-a;(kA, 2% x, y, S) 

=D,CA,(;l,x,y,S1, 1)+(-l)“‘-“’ 

x CJW, XT YY s,, 111*1 

+ D, k, 1, x, y, S1, T 
> 

+ ( - l)s’ - s* 

(31) 

where 

(32) 

-s, 
D5=4kja(k$S;-E,2). 

This equation holds for all the values of S that are shown in 
(26) and (27). 

Now we need to evaluate integrals which are of the 
form given in (28) and (29). We will first concentrate on 
evaluating S;,. In order to simplify the exponential factor 
in (28), we make the change of variables, 8 = 8 - 8, and 
apply the addition formulas to the resulting trigonometric 
functions, thereby obtaining 

Since the variable of integration in (28) ranges over one full 
period of the integrand, the only restriction that was placed 
on chasing the limits of integration in (33) was that they 
also allow for integration over one full period. 

At this point it is beneficial to rearrange the integrand of 
(33) in such a way that fi only appears in the form of cos 0 
in the denominator. This can be accomplished by multi- 
plying the numerator and denominator by (cos 8 cos 8, + 
P + sin t? sin 0,). After multiplying out the numerator, the 
integral can be simplified by neglecting any odd functions of 



4 which appear in the numerator since they will integrate to By comparing (36) with (40), we find that 6 can be defined 
zero. Two cases are possible since S1 = 0 or S1 = 1: as 

5 
n [P + cos e. cos e] = 1 ,. 
~ x [P2 - sin* 0, + 2P cos 0 cos I!?, + cos* Q] 

(34) 
AdA x, YY 1, PI 

s I[ = sin B0 
[P cos e + cos e,] 

--n [P’ - sin2 8, + 2P cos 0 cos 8, + cos2 01 

The denominators in (34) can be factorized and then a 
second partial fraction expansion can be used to show that 

.$(A x, Y, S,, P) = D&6(& x, Y, F, 1 

+ DsJW, x, Y, F- 1, (35) 

where an expression for F, is given in Table III, and 

&(A x, Y, F, I= r’l, cos o’_;;;;o, p) de, (36) 

D,= 
cos 8, JFT - jP sin 13~ 

2 ,/K-i 1 [jJFT]” 
I . 

D,= 
cos 8, JFT + jP sin 8, 1 [-jJFi]‘I 

r 
P3 1. (37) 

A.3. Representation in Terms of ILHIs 

The integral, Ye, can now be rewritten in terms of 
special functions. Using the integral representation of the 
Bessel function, it can be shown that & satisfies the lirst- 
order, non-homogeneous, ordinary differential equation: 

The solution of (38) is given by 

.Y6(A, x, y, F,) = -2r,je-i’F*r (39) 

where 6 is a constant which is yet to be determined. If we 
replace the Bessel function by its integral representation, 
interchange the order of integration, and carry out the 
resulting integral, we find that 
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6= 
~;%(jF+)<O 

-co; ‘%(jF,)>O 
(41) 

In addition, reference to (21) shows that (39) can be 
rewritten in terms of ILHIs: 

&(A, x, y, F,) = -2xje-jAFf’{Je0( - jF,, Ar) 

-Jed-jF,, 41. (42) 

ILHIs were studied in great detail in [36]. We will use 
many of the results that were obtained in [36] in this 
appendix. 

A.4. &for 0 d A -c k, 

If we refer back to (28) and (29), we find that there are 
apparent singularities in the denominators of the two 
integrands when 0 < P < 1. On the other hand, the apparent 
singularities in the denominator of (8) are actually 
removable singularities for the values of S given in (26) and 
(27). Since 9i can be decomposed into a finite number of 
integrals which have the form of Yd and &, it must be 
possible to remove the apparent singularities when the 
integrals are added together. 

When P > 1, there are no singularities, so no problems 
exist. Therefore, we will first deal with this case, and later we 
will use analytic continuation to obtain a solution which is 
valid when 0 6 P < 1. Using [36, (45)-(47), (49)], it can be 
shown that 

Jed-jF,,Q=liJm, (43) 

where the branch cut for the square root is defined by 

%(Jiq) 2 0; WF, I< 0, 

%(Jl=q)<O; ‘WjF+ ) > 0. 
(44) 

Using the definition for F, in Table III, we find that 

%( jF, ) = f sin &, Jm 

l-Fi=(+Psin8,+ jcos8,dm)2 ’ 1 
P> 1. 

(45) 

In order to satisfy the condition in (44) when P> 1, the 
branch cut for Jm must be defined as in Table III. &(A, x, y, F, ) = e --jAP* r 

J-~&J-F 1 de’ (40) f 6 Referring to (37), we find that the expressions for D, and D, 
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can be simplified by applying the expression for Jq in 
Table III: 

D,= J1-FZ [-jJm]“l. 

2j JFT 

(46) 

Finally, combining the results in (35), (42), (43), and 
(46), yields 

where an expression for 9, is given in Table III, and 

&(A., x, y, S1, P) = nj( j JFi)sl- ’ 
x {e-inF+r + (- 1)” e-jAF-“}. (48) 

Writing X,4 in this way simplifies the analysis since, as is 
shown below, the term & will cancel with other terms when 
the pieces are recombined to yield Y1. First, it is easy to 
show that 

~,(n,x+d,Y,S,,P)+~(n,x-d,y,S,,P) 
- 2 cos(k, d) 9&, x, y, S,) P) = 0, (49) 

when S4 = 0 and P = k, I,?.. Since Y* only appears in linear 
combinations which have the form given in (49) (see (19), 
(31), and (47)), we can cancel Ys from (47) and still obtain 
the correct result for X1 when S, = 0 and P > 1. Likewise, it 
can also be shown that 

(2 + 4 cos2(k,d)) &(A, x, y, S,, P) - 4 cos(k,d) 

x Cs’,(k x + 4 Y, S,, P) + 48(A x - 4 Y, S,, PII 

+ 444 x + 24 Y, S1, P) 

+9&l, x - 2d, y, S1, P) = 0, (50) 

when S4 = 1 and P = kA/IZ. Therefore, we can once again 
cancel J$ in (47) and still obtain the correct result for Y1 
when all of the pieces are added together (see (20), (3 1 ), and 
(47)). Therefore, we can define 

&k,, 4 x, Y, S) 

=D1[~,(~,x,y,sl,l)+(-l)~‘-~* 

x Cm& 4 Y, s,, 111*1 

* 

(51) 

where the hat on $j serves as a reminder that this expression 
will give an incorrect value for (17) but it will yield the 
correct results for the integral of interest, 9, , when all of the 
pieces are added together. 

In order to evaluate (5 1) for 0 < ,J < k, , we need to find 
an expression for $(A, x, y, S,, 1). When S, = 1, it is easy 
to show that 

&(A, X, y, 1, l)= -2rcjsin B,ej’“Je,(jcos BO, nr), (52) 

where we have made use of the results in Table III. This case 
was easy to handle since the singularity in X404(2, x, y, 1, 1) is 
a removable singularity (see (28)). On the other hand, it is 
more difficult to find $,(A, x, y, 0, l), since X4(2, x, y, 0, P) 
has a non-removable singularity at P = 1. As was previously 
mentioned, the singularity at P= 1 is a removable 
singularity in (8); therefore, it must also be possible to 
remove this singularity by adding the pieces which Y1 was 
decomposed into back together. 

As it turns out, the singular part of &(A, x, y, 0, 1) is con- 
tained totally in $*(A, x, y, 0, 1). We have previously shown 
that the term & will cancel with other terms when all of the 
pieces are added together to obtain X1; therefore, we will 
not have to deal with this singular piece. The other term in 
(47) only contains a removable singularity. Therefore, we 
can obtain an expression for $,(A, x, y, 0, 1) by removing 
this singularity. If we substitute the expressions for F, and 
dm into &, then we can use (21) to show that 

x{Psin&,sinh[sin8,,/~(t-ilr)] 

- j cos 8, Jm cosh[sin B,, dm 

x (t - /Ii-)] } J,,(t) dt. (53) 

Expanding the hyperbolic functions in power series expan- 
sions, yields 
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= 271 - e’%Je,(j cos 80, Ar) 

x [Jr sin* 8, + j cos e,] 

+ sin’ B0 ,-i~~~~d--I’+Jo(t) dt (54) 

In order to simplify this equation, we need to find an 
expression for integrals which have the form 

,a$(~, 
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(see (19) and (20)). Since the contributions from the A.7. Definition of & 
singularities all cancel out in the end, the method which is 
used to handle the singularities is unimportant, so long as 
the method is used consistently on each piece in the decom- 
position. 

We found that analytic continuation arguments provided 
the simplest method for handling the case when 1> k,. 
Earlier, we showed how & can be represented in terms of a 
finite number of ILHIs when 0 < ,? < k, (see (19), (20), and 
Table III). Since Yi and its expansion in terms of ILHIs are 
both analytic functions of 1 for the values of S in (26) and 
(27), we can extend the region of validity for the previous 
results to 2 > k, by letting 

For the purposes of this appendix, we found that it was 
advantageous to neglect some of the terms in the expression 
for Yj. In doing so, we obtained the expression for &. The 
expression for $3 will be used throughout this paper, 
however, it is not always the most convenient expression to 
use. 

Another expression can be obtained by reintroducing the 
terms that were neglected in the expression for &. These 
terms can be taken into account by defining the expression 

&L 4 x, Y, S) 
= 

(66) 
D,{4(+, Y, S,, l)+(--1)s’-s2 

x cm4 4 YY St, ul*) 
where P = kA/IZ. It should be pointed out that the complex 
conjugate operations in the expression for & should be 
written out explicitly before (66) is applied. As it turns out, 
the expression for 23, which is given in Table III, is still 
valid when A > k, . 

A.6. Rejlection Properties for 3, 

Now that we have an expression for &, it is important to 
look at the reflection properties (i.e., reflections about x = 0 
and y = 0) of this expression. Specifically, we would like to 
determine whether the relationships in (22) and (23) will 
still hold when -a; is replaced by &. We will first look at 
&kA, 1, x, - y, S). Referring to Table III, we find that 

where an expression for J$ is given in (47) and 

F,(-h,, f’) =FT (4,, PI. (67) &(A> X, Y> p) = 

(72) 

Using the above relationship, it is easy to show that 

&L 4 x, -Y, S) = ( - 1)” &k,, 4 x, y, S). (68) 

It is more difficult to handle &(kA, A, -x, y, S), since we 
will need to handle the two cases P > 1 and 0 < P < 1 
separately. First, when P > 1 we find that 

jF, (n - 00, PI = W’, (b, P)l* 
Jl -F; (TC - 8,, P) = [Jl - FZ, (O,, P)]*. 

(69) 

Substituting these results into Table III, we find that 

&kA, 1, -x, Y, S) = (- l)“‘&k,, 2, x, y, s), (70) 

when P > 1. On the other hand, when 0 < P-C 1, 

.iF, (n - h,, PI = CP’, (b, P)l* 
J1-F2,(7r-e0, P)=-Jl-F;(e,, P). 

(71) 

Therefore, we can show that (70) still holds for this case. 

x[Jl-F:Je,(-jF+,Ar)-1] 
+ J’m e-jAF-r 

x [Jl - F2 Je,( - jF-, h) - l] 

- 2[J,(ir) - jP cos BOJO(Izr)]}. (73) 

Referring to (31), (47), and (63) we find that .$3 = $ 
when P > 1. However, & # -p3 when 0 d P < 1. The reason 
for this is discussed below. Since Yj (see (17)) is not an 
analytic function for values of I > k, , analytic continuation 
arguments can only be applied to Yi, which in turn is com- 
posed of a number of pieces which have the form of YX (see 
(19) and (20)). Therefore, even though & # Yj when il > k,, 
we can use 4 in place of & and still obtain the correct 
results for $i. 

A.& Rejlection Properties for *& 

As was the case with &, it is important to investigate the 
reflection properties of &. If we apply (67) and (69) to (72), 
then we find that 
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&(k,, A x, - Y, S) 

= ( - 1)“’ &k,, A, x, y, S); %>O (74) 

&,(k,, 4 -x, Y, S) 

= ( - 1)” &(k,, ,I, x, y, S); k,>A>O. (75) 

These results are not surprising since we have previously 
shown that & = J$ when k, > 2 20 (see (22) and (23)). 

When 3. > k,, we can use (71) to show that 

$A, 4 -x, Y, S) 

= (- l)‘* &(k,, %, x, y, S) 

+ 2nj(Jl - P*)‘l-’ D, 

x {(-1)“’ [e j~F+r_(_l)S~--Sz,~JiF+r] 

+ejiF~r_(_l)S~~Sze-JIF-rj 

+Jm [ejA^F-r+e-S.F-r]}. (76) 

The fact that this result differs from (23) also should not be 
surprising, since we have previously shown that there is no 
reason for & to be equal to YZ when ,? > k,. 

APPENDIX B: NUMERICAL COMPUTATION OF 3’ 

B.l. Introduction 

In Appendix A, we demonstrated how & can be written 
in terms of ILHIs, Bessel functions, and other elementary 
functions. In [36], it was shown that Je,(a, z) can be 
efficiently computed for all values of a and z, where a E @ 
and z E !R, by using either the Neumann series expansion 
[36, (58)], or one of the two factorial-Neumann series 
expansions [36, (29), (57)]. Actually, an algorithm was 
developed in [36] which uses these three expansions to 
compute a single ILHI, Je,(a, z), to a user-defined number 
of significant digits (SD). Now, in this appendix we will 
show how the ILHIs which appear in the decomposition of 
& (see Table III) can be efficiently computed in parallel. We 
will make use of a number of the results from [36] in this 
appendix. It should be noted that a uniform asymptotic 
expansion for Je,(a, z) can also be obtained using the 
methods in [46]. 

The three expansions in [36, (29), (57), (58)] behave very 
differently for different values of the variables a and z. In 
[36], it is shown that the convergent factorial-Neumann 
series expansion converges most rapidly for small to 
moderate values of z Id-l. On the other hand, the 
asymptotic factorial-Neumann series expansion can be used 
when z Ia2 + 11 is large. Finally, the Neumann series expan- 

sion fills in the gap left by the other two expansions, since it 
is most useful when IJzr”-‘T-r + al > 1 and z has a small to 
moderate value. 

B.2. Computation of the ZLHZs for 0 < 1 <k, 

We will first handle the case when 2 -C k,. For the 
applications in this paper, T(X, y) will have a maximum 
value of a few wavelengths; therefore, z = ilr will have a 
small to moderate value when ,? <k,. Since z is relatively 
small when 1” < k,, we will use the backward recurrence 
algorithm which was outlined in Section 6 of [36] to 
compute the sequence of Bessel functions. 

In order to evaluate &(;1, X, y, S,, 1), we must compute 
(see Table III) 

Je,( j cos 8,) %r ). 

For this ILHI, we find that 

(77) 

lu2+ 11 =sin28,< 1; (78) 

therefore, the convergent factorial-Neumann series expan- 
sion is the best expansion to use for the computation of (77). 
When we are computing the elements in the impedance 
matrix, it is possible to save some computation time because 
we only need to compute the real part of &(A, x, y, 0, 1) 
(see (26) and Table III). Therefore, it can be shown that 

=2x1 rJ,(Ar)-Ry*f i 
0 

x$&yr;y;:2,1: S‘%=l. (79) 

On the other hand, if we are interested in computing the 
electric field, then we will have to use 

$;(A x, Y9 1, 1) 

= -2nj%yr 2 f (2),=,[~1 
X 

CJk(nr)+jcoseOJk+,(lr)l. 
T(k+ 3/2) ’ 

S4 =O. (80) 

We only need to compute Y,(n, x, y, S, , 1) for S, = 1, since 
D, = 0 when S = (0, LO, 0) (see (27) and Table III). 

The only other ILHIs that need to be computed in order 
to evaluate YJ are 

Jed - jF+ , h) 
Je,( - jF_ , Ar). 

(81) 
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If we refer to Table III, we find that the factor where (79) and (80) are used to compute &, and (85) is 
used to compute 9 &. 

(82) As was shown in Appendix A, the expression for 3’ can be 
used in place of Y3 in the expressions for Y, . Also, the reflec- 
tion equations for $3 are given in (74) and (75). may be much greater than one when P = k,/l > 1. There- 

fore, the convergent factorial-Neumann series expansion 
will not provide the most efficient method for the computa- 
tion of the ILHIs in (81). On the other hand, we can show 
that 

=- : e’j”“[kA + ,/ml. (83) 

Since Ja + ,/ml b 1 when A <k,, we will use the 
Neumann series expansion to compute the ILHIs in (81). 

At this point, it is convenient to define 

9&V, x, Y, P) 
7 -e -jAF*r[Jm Je,( - jF+, Ar) - 11. (84) 

By using (83) and the Neumann series expansion, we find 
that Y& can be written as 

qg& x, Y, P) = 1 
(je _+ieo)k E~J~( h) 

k=O [P+Jm]k’ 
(85) 

When 1~ k,, we find that it is convenient to use the expres- 
sion for 4 instead of the expression for &. Therefore, using 
(84), we find that & (see (72)) can be rewritten as 

?hi, 1, x, Y, S) 

=D1(9#,x,y,S1, 1)+(-l)“‘-“* 

x C&CA x, Y, S,, l)l*} + &nj 
(j~k~)sl~l 

O<A<k,, (86) 

B.3. Computation of the ILHIsfor I > k, 

Now we must handle the more difficult case when A > k,. 
Once again, we need to compute the integrals that are given 
in (77) and (81), but this time we need to use the definitions 
in Table III which are valid when 0 ,< P < 1. For the integral 
in (77), the parameter IQ* + 11 will still behave as in (78). 
The expressions which were previously derived (see (79) 
and (80)) can still be used when lly2/2r is small, but as the 
value of 1 increases, more and more terms will be required 
in these expansions. Therefore, it is desirable to find a new 
way to compute (77) for large values of A. Also, now that 
E, > k,, the parameter 1u2 + 11 will have a very different 
behavior for the two integrals given in (81). In fact, we now 
find that 

la2+lI=Il-F:I - 

l>k,, (87) 

where we have made use of ( 18). Once again, we will need 
to use a different method to compute the integrals in (81) 
now that 1> in tr 9.333 0.666u
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Now, if we use the results in [36, (76), (77)], we find that 
the asymptotic factorial-Neumann series expansion can be 
used to compute &,(a, z) to SD significant digits provided 
that 

1 
5” lo- SD (eazJeo(u, z)l 

2 

‘,u2+1, 6 e--z’u2+1t’2 max(1, Ial), (90) 

where the following approximation can be applied: 

min(2, z Ia f jl) $0. (91) 

When z > SD + 4, but (90) is not satisfied, we still prefer 
to use forward recurrence to compute the sequence of Bessel 
functions; however, this time we would like to use the con- 
vergent factorial-Neumann series expansion to compute 
Je,(a, z). It can be shown that this method can be used if 
C36, (7911 

1 
jx lo- SD le”‘Je,(a, z)l 

where 

we will have to find another way to compute that integral. 
Referring to [36, (29), (58)], we find that the convergent 
factorial-Neumann series expansion will converge faster 
than the Neumann series expansion when z la* + 11 < 2. 
Therefore, we will use the convergent factorial-Neumann 
series expansion to compute Je,(u, z) when this is true. 
When z la2 + 11 > 2 and [u* + 11 f 1, the convergent fac- 
torial-Neumann series expansion will still converge faster 
than the Neumann series expansion, but now we need to 
worry about round-off errors. In Section 6 of [36], it is 
shown that in order to use the convergent factorial- 
Neumann series expansion to compute Je,(u, z) to SD 
significant digits when z la* + 11 > 2 and la* + 11 < 1, all 
operations have to be carried out to SDN significant digits, 
where 

(a’+ l( JGe z[W(a)- Id+ 11/2] 

SDN = SD - log r0 
max(l, Ial) ). (95) 

Therefore, if the computer has at least SDN significant 
digits of accuracy, then the convergent factorial-Neumann 
series can be used to compute Je,(u, z). If the convergent 
factorial-Neumann series expansion is used for this case, 
then we will also have to calculate the sequence of Bessel 
functions to SDN, instead of SD, significant digits. 

Finally, if the parameters a, z, and SD are such that none 
of the previously mentioned methods can be used, then we 
will use backward recurrence to compute the sequence of 
Bessel functions, and the Neumann series expansion [36, 
(58)] will be used to calculate Je,(u, z). An algorithm which 
is structured as outlined in this appendix can be used to 
compute the ILHIs which are encountered in the expression 
for APA, 2, x, y, S). 

kint = int(z). (93) 
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